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Abstract—Physical interpretation of the recently introduced
transparent absorbing boundary for the grid termination in finite
methods shows that the absorbing domain in that method is
described by the constitutive equations of moving media. The field
solutions in this domain give the requirements for the material
parameters to provide zero reflection at arbitrary incidence
angles and arbitrary polarizations of the incident waves.
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truncation method, wave impedance.

I. INTRODUCTION

RECENTLY, a new technique for truncation of the com-
putational domains in finite methods was proposed [1].

In this method, which is called by the authors transparent
absorbing boundary (TAB), a physical problem to be solved
numerically is transformed into a problem for auxiliary fields.
These fields are subject to a set of differential equations which
are different from the Maxwell equations, thus this auxiliary
problem is treated as a pure mathematical formulation with
no clear physical meaning. Here, we demonstrate that this
auxiliary problem has a physical counterpart: the equations
which govern the auxiliary fields in the absorbing region
of TAB are known in physics. They are the equations for
the electromagnetic fields in moving media [2], [3]. In other
words, the absorbing domain can be treated as if it were
filled by a certain uniaxial bianisotropic absorbing material.
We will show that the absorption is caused solely by the field
coupling, not by dielectric or magnetic losses. Field solutions
of the equivalent physical problem lead to the requirements
necessary to provide zero reflection from the computational
domain boundary.

II. THEORY

A. Physical Interpretation

In the TAB boundary formulation, auxiliary vectors and
are introduced, which are related to the physical fields

and by [1, eq. (1)]

(1)
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Theoretically, ideal absorption takes place if the function
decays outward from the computation domain and becomes
zero at the truncation boundary. Instead of the Maxwell
equations for the physical fields and equations for
the auxiliary fields are solved. These equations ([1, eq. 2]) can
be rewritten for source-free regions (in the frequency domain)
in the form

(2)

(3)

Here, the relative complex permittivity and permeabilityand
incorporate the loss parametersand explicitly included

in [1, eq. (2)]. Clearly, these equations can be interpreted as
conventional macroscopic Maxwell equations in the medium
with the following constitutive relations:

(4)

(5)

Equations (2c) and (2d) of [1] can be seen to coincide (in
source-free regions) with Function
can be chosen to be a linearly decaying function, thus
is a constant vector pointing outwards from the computational
domain. With this in mind, we can consider the case when
the auxiliary fields and satisfy conventional Maxwell
equations in a homogeneous region whose material properties
are described by constitutive relations (4) and (5).

Material relations (4) and (5) (see [6, p. 91]) describe a lossy
nonreciprocal (see [6, p. 94]) uniaxial bianisotropic material
[5], more specifically, a moving medium whose velocity is
along the direction of [2], [3].

B. Plane-Wave Solutions and Discussion

Knowledge of plane-wave solutions in the absorbing region
helps in understanding its properties and gives the zero-
reflection requirement. With the goal to find the eigensolutions
for the Maxwell equations with the constitutive relations of
TAB (4), (5) we note that this problem is similar to that for
the uniaxial omega medium (composite spatially dispersive
material with inclusions in the form of letter ). The only
difference is that the omega medium is reciprocal, thus both the
field-coupling terms in its constitutive relations have the same
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sign. Wave solutions for uniaxial omega media are known [7],
and the present problem can be solved in a similar manner.
Let the direction of is defined by the unit vector
The following notation is convenient for the field analysis:

Here, the field coupling coefficient
(proportional to the velocity of the moving medium) is

dimensionless.
To find the eigensolutions we split the fields into the

transverse and longitudinal parts with respect to the axis:
Considering eigensolutions,

the coordinate dependence of the fields in the transverse plane
can be substituted in the form where is a
two-dimensional vector in the transverse plane. The following
equations for the transverse field components hold:

(6)

(7)

where is the free-space wave number and

is the transverse unit dyadic. Eigensolutions
of (6) and (7) are plane waves modulated by

(8)

where and are transverse amplitude vectors. This result
can be expected: the auxiliary fields are products of the
physical fields (which are plane-wave solutions of the Maxwell
equations) and function Thus, the fields indeed always
decay in the outward direction, whatever the propagation
direction of a wave. This property is a manifestation of the
nonreciprocity of the effective medium. The decay factor is
defined by the additional parameter in the constitutive relations

Substituting the eigensolutions in (6), we find the wave
impedances of the eigenwaves. In fact, parametercancels
out, and the impedances are seen to coincide with that of
a simple isotropic medium with the same permittivity and
permeability:

(9)

where Indexes TM and TE refer, respectively, to
TM and TE polarizations with respect to the axis

This result leads to the conclusion that the ideal interface
matching with free space can be realized if since
in that case the wave impedances in the absorbing region are
the same as that of free space. If the computational domain
is filled with a certain isotropic material, the permittivity and
permeability in the absorbing region must be the same as that
in the main region. The theory was developed in the frequency

domain, and the permittivity and permeability in (9) are com-
plex numbers. In the time domain, this requirement concerns
real-valued permittivity, permeability, and also conductivities.

Absorption in the case of matching with lossless media
is solely due to the coupling parameter The decay rate
is independent from the permittivity and permeability values.
Since the wave impedances (9) are the same as that of a simple
magnetodielectric, the reflection from an interface does not
depend on function

III. CONCLUSION

The recently introduced TAB for the termination of compu-
tational domain of finite methods is seen to be equivalent to
a material layer described by the same constitutive equations
as hold in moving media. This “filling material” is a lossy
nonreciprocal uniaxial bianisotropic medium. Electric and
magnetic fields are coupled, and the coupling parameter is
determined by the function which connects physical and
auxiliary fields in TAB. On the other hand, the permittivity
and permeability of the absorbing layer do not depend on that
function.

Field solutions for regions filled by this material show that
eigenwaves in TAB are ordinary plane waves modulated by
function Field decay is totally due to the artificially
introduced field coupling and does not depend on the fre-
quency. Wave impedances for eigenwaves in the absorbing
regions are seen to be the same as that in the computational
domain (which means that no reflection at the interface occurs
for all incidence angles and arbitrary polarizations) only if the
permittivity, permeability, and conductivities in the absorbing
region are the same as that in the main computational domain.
In fact, ideal matching requirement is the same as that for
interfaces with simple isotropic media.

The above field analysis of TAB can be easily extended
to the case when the permittivity and permeability are uni-
axial dyadics, like in the anisotropic PML formulation [4],
[5]. The result shows that the two loss mechanisms, those
employed in the PML and the field coupling of TAB, act
independently. The zero-reflection condition does not change
with the introduction of bianisotropic coupling parameters. The
trivial zero-reflection requirement (free-space permittivity and
permeability of the layer) can be exploited in TAB because
the loss is provided due to the field coupling. Finally, we
note that [as seen from (8)] the waves traveling back into
the computational domain from the truncation boundary are
actually amplified in the same rate as the outward waves are
attenuated, which means that the method is very sensitive to
reflections from that boundary.
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